Thursday, November 7, 2019

Attentional Capture Essays - Cognitive Science, Neuroscience

Attentional Capture Essays - Cognitive Science, Neuroscience Attentional Capture ABSTRACT: How likely are subjects to notice something salient and potentially relevant that they do not expect? Recently, several new paradigms exploring this question have found that, quite often, unexpected objects fail to capture attention. This, phenomenon known as 'inattentional blindness' has been brought forth by Simon (2000) who raised the intriguing possibility that salient stimuli, including the appearance of new objects, might not always capture attention in the real world. For example, a driver may fail to notice another car when trying to turn. With regards to this, in the context of driver attention, this (draft) proposal predicts that intattentional blindness may be the cause of the majority of automobile accidents, and that attentional capture may be improved by expanding the attentional set of the driver through training in virtual driving settings. This review first considers evidence for the effects of irrelevant features both on performance, by implicit attentional capture and on awareness, by explicit attentional capture. Together studies of implicit attentional capture and recent studies of inattentional blindness can provide a fuller understanding of the varieties of attentional capture, and has important implications for real world driving situations. Two general definitions have been used in the study of attentional capture. Explicit attentional capture occurs when a salient and unattended stimulus draws attention, leading to awareness of its presence. Implicit attentional capture is revealed when a salient and irrelevant stimulus affects performance on another task, regardless of whether or not subjects are aware of the stimulus (Simon, 2000). Explicit attentional capture for example, occurs when someone across a room says our name or waves vigorously, and that stimulus signal sets itself apart from the background and w e become aware of its source (Simon, 2000). Typically, studies determine whether capture has occurred by asking subjects whether they noticed the critical stimulus. Several recent studies of explicit attentional capture have found that when observers are focused on some other object or event, they often fail to notice salient and distinctive objects, a phenomenon that is termed inattentional blindness (IB). Although the use of explicit reports was one of the first approaches used to study attentional capture , most studies have focused on implicit attentional capture. These studies make the critical stimulus irrelevant to the primary task and infer capture of attention based on different patterns of response times or eye movements. (Simon, 2000). Four distinct paradigms have been used to explore implicit attentional capture by measuring the effects of an irrelevant stimulus on performance of a primary task visual search task. These have already been commonly discussed directly or indirectly before by researchers (eg. In PSY 375 lectures) so they will be briefly presented in a tabular form (See Appendix 1). The primary debate in the literature on implicit attentional capture focuses on which features might automatically draw attention regardless of the expectations and attentional set of the observer. Evidence from the Pre-cueing paradigm suggests that attentional capture does not occur in the absence of the appropriate attentional set. Findings from each of the other paradigms suggest that stimulus-driven capture can occur, particularly by the abrupt onset of a new object. All of these studies explore the degree to which subjects can ignore something they know to be irrelevant. During performance of these tasks, observers often do not even notice the irrelevant feature despite its effects on their search performance (Yantis, 1993). In fact, even distinctive features that are presented below a subjective threshold for awareness can implicitly capture attention and affect performance (McCormick, 1997) . Evidence for implicit attentional capture is critical to understanding the mechanisms underlying visual search and for determining whether a perceptual event can automatically influence performance. Furthermore, such implicit effects can have a dramatic influence on our execution of real-world tasks and goals. For example, much of our driving performance probably reflects implicit detection of salient events (such as cars turning or slowing down) leading to corresponding adjustments to our behavior. A good proportion of perception occurs without awareness, and we need to be able to adjust our behavior without necessarily becoming aware of the cause or even the need for adjustment (Simon, 2000). Do we automatically really become aware of salient events in our visual environment, particularly events

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.